

UNIVERSIDAD NACIONAL DEL CALLAO FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICA ESCUELA PROFESIONAL DE FÍSICA

SÍLABO

I. <u>DATOS GENERALES:</u>

1.1 Asignatura : TÓPICOS AVANZADOS DE LA FÍSICA C

COMPUTACIONAL

1.2Código: EL-7061.3Condición: Electivo1.4Pre – requisito: EL-6061.5Nº de Horas de Clase: 04

Teoría: 02

Laboratorio: 02

1.6 Nº de Créditos : 03
1.7 Ciclo : VII
1.8 Semestre Académico : 2022-A
1.9 Duración : 17 semanas

1.10 Docente : Mg. Jorge Martín Quispe Sánchez

II. SUMILLA:

✓ Naturaleza: Asignatura teórica-práctica perteneciente al área de cursos electivos correspondiente a la línea de Investigación en Física Computacional.

- ✓ Propósito: Brindar al estudiante una presentación clara y lógica de los conceptos de la Física aplicada en la dinámica de fluidos geofísicos y computacional.
- ✓ Contenido: Dinámica de Fluidos Geofísicos (DFG) y Computacional. Ecuaciones Diferenciales Parciales (EDPs). Método numérico de diferencias Finitas (MDF). La modelación y simulación numérica de la DFG. Análisis y aplicación de códigos. Herramientas de análisis de datos. Aplicaciones de la DFG y computacional. Métodos numéricos de elementos y volúmenes finitos.

III. COMPETENCIAS DE LA ASIGNATURA

COMPETENCIAS GENERALES

- Generar nuevos conocimientos en la aplicación de las ciencias físicas vinculada a la dinámica de fluidos geofísicos computacional, utilizando la investigación científica y tecnológica.
- Conoce y maneja los principios fundamentales de la dinámica de fluidos geofísicos computacional para comprender adecuadamente los procesos físicos involucrados en los sistemas oceánicos.
- Conoce, comprende y aplica diferentes métodos numéricos y desarrolla la capacidad de razonamiento para resolver problemas específicos relacionados con las ecuaciones diferenciales parciales y sus aplicaciones en casos de estudio.
- Utilizar conocimientos y herramientas numéricas de la dinámica de fluidos geofísicos y computacionales en la solución de problemas de la geofísica en las ciencias marinas de manera adecuada centrados en la investigación.

COMPETENCIA DE LA ASIGNATURA

- Habilidades en el conocimiento básico de la DFG y computacional.
- Manejo de la red global para búsqueda de información que permita profundizar sus conocimientos en el desarrollo de su formación profesional.
- Capacidad investigadora para generar estudios científicos propios para la solución de problemas específicos relacionados con la dinámica de fluidos geofísicos computacional que la sociedad requiera.
- Aplicará diversas metodologías para la solución de problemas en la dinámica de fluidos geofísicos.

COMPETENCIAS ESPECÍFICAS, CAPACIDADES Y ACTITUDES

COMPETENCIAS	CAPACIDADES	ACTITUDES
 Conoce principios y 		 Participación con actitud crítica
fundamentos de la DFG.	 Explica principios y fundamentos de la DFG en 	y propositiva en problemas
 Conoce las aplicaciones de 	el contexto del análisis diferencial e integral.	relacionados con la DFG.
las EDPs.	 Aplica conceptos aprendidos al resolver 	 Participa e interviene con
 Aplica la ecuación de Navier 	problemas que involucren a las EDPs.	mentalidad abierta para asumir
Stokes en la DFGs.	 Conoce y aplica la ecuación de Navier Stokes 	nuevos conceptos en la
 Resuelve EDPs de la DFG 	en problemas relacionados con la DFG.	solución de problemas
con métodos analíticos y	 Conoce la derivación de las EDPs y aplica en 	asignados.
numéricos.	diferentes estudios del campo de la DFG.	 Demuestra interés por trabajo
 Resuelve problemas 	 Utiliza fundamentos de aprendizajes basados 	en equipo, con respeto,
específicos de la DFG.	en la identificación de problemas, con contexto	tolerancia, y actitud de reto.
 Utiliza estrategias de 	argumentativo como estrategias de aprendizaje	 Capacidad científica en realizar
investigación formativa en la	C2: De Investigación Formativa:	trabajos de investigación como
mejora del proceso y la	Elabora una monografía para ser sustentada	parte de su
calidad de su aprendizaje.	en clase.	formación profesional.

IV. PROGRAMACIÓN POR UNIDADES DE PROGRAMACIÓN:

PRIMERA UNIDAD: Principios y fundamentos de la Dinámica de Fluidos Geofísicos.

DURACIÓN: 02 Semanas: 1ra. y 2da. Semana

CAPACIDADES DE LA UNIDAD

C1: De Enseñanza-Aprendizaje: Aplica principios y fundamentos en la dinámica de fluidos geofísicos.

C2: De Investigación Formativa: Elabora una monografía sobre la aplicación de temas desarrollados en el curso relacionado a un caso de estudio.

PROGRAMACIÓN DE CONTENIDOS

SEMANA	CONTENIDO CONCEPTUAL	CONTENIDO PROCEDIMENTAL	CONTENIDO ACTITUDINAL	INDICADORES
1	 Conceptos básicos y 	 Información sobre la asignatura. Identifica los métodos de estudio en la DFG 	 Participa e interviene en las sesiones de aprendizaje. Es tolerante en actitudes diferentes a los demás distintos al suyo. 	 Explica conceptos y principios en la DFG. Sesión 2 Laboratorio: Matlab y las practicas a realizar
2	 Análisis diferencial e 	 Analiza e interpreta el desarrollo temático. Resuelve problemas analíticamente e interpreta resultados 	 Responsabilidad en trabajo individual y equipo. Es tolerante en actitudes diferentes a los demás distintos al suyo. 	 Explica el análisis diferencial e integral. Sesión 4 Busca información de aplicaciones sobre los temas del curso.

SEGUNDA UNIDAD: Ecuaciones Diferenciales Parciales.

DURACIÓN: 02 Semanas: 3ra. y 4ta. Semana

CAPACIDADES DE LA UNIDAD

C1: De Enseñanza-Aprendizaje: Aplica conceptos de las EDPs en la DFG.

C2: De Investigación Formativa: Elabora una monografía sobre la aplicación de temas desarrollados en el curso relacionado a un caso de estudio.

PROGRAMACIÓN DE CONTENIDOS

	1 NO STANIA CICIT DE CONTENIDOS				
SEMANA	CONTENIDO CONCEPTUAL	CONTENIDO PROCEDIMENTAL	CONTENIDO ACTITUDINAL	INDICADORES	
	Sesión 5 • Ecuaciones	Desarrolla contenidos	 Responsabilidad en trabajo individual y en 	 Aplica teoría de las EDPs. 	
3	diferenciales	propuestos.	equipo. • Es tolerante en actitudes diferentes a los demás distintos al suyo.	Sesión 6 Presenta el tema para la elaboración de la monografía	

	Sesión 7	 Desarrolla temática 	 Demuestra creatividad y 	 Aplica conceptos de
	Ecuaciones	propuesta.	responsabilidad en	las EDPs en la DFG
	Diferenciales	 Propicia la 	trabajo individual y	y su uso en modelos
4	parciales en la	participación de los	equipo.	hidrodinámicos
4	DFG.	estudiantes.	 Participa en sesiones de 	Sesión 8
	Modelos	 Resuelve problemas 	aprendizaje.	Tarea N° 1.
	hidrodinámicos	e interpreta	 Es tolerante en actitudes 	
		resultados	diferentes al suyo.	

TERCERA UNIDAD: Métodos numéricos de diferencias finitas

DURACIÓN: 02 Semanas: 5ta. y 6ta. Semana

CAPACIDADES DE LA UNIDAD

C1: De Enseñanza-Aprendizaje: Aplica métodos numéricos en la solución de ecuaciones diferenciales parciales en la descripción de fenómenos físicos en la dinámica de fluidos computacional.

C2: De Investigación Formativa: Elabora una monografía sobre la aplicación de temas desarrollados en el curso relacionado a un caso de estudio.

PROGRAMACIÓN DE CONTENIDOS

SEMANA	CONTENIDO CONCEPTUAL	CONTENIDO PROCEDIMENTAL	CONTENIDO ACTITUDINAL	INDICADORES
5	 Método de 	del MDF. • Resuelve	 Responsabilidad en trabajo individual y equipo. Es tolerante en actitudes con diferencias de su entorno personal. 	 Aplica el MDF en EDPs. Sesión 10 Presenta estructura y contenidos de la monografía.
6	 Ecuaciones de 	 Aplica temática de ecuaciones en SW. Resuelve problemas sobre modelos físicos matemáticos. 	 Demuestra responsabilidad en trabajo individual y en equipo. Es tolerante en actitudes con diferencias al suyo. 	 Aplica las ecuaciones de SW y modelos físicos matemáticos. Sesión 12 Tarea N° 2

CUARTA UNIDAD: La ecuación de Navier Stokes. DURACIÓN: 03 Semanas: 7ma. 8va. y 9na. Semana

CAPACIDADES DE LA UNIDAD

C1: De Enseñanza-Aprendizaje: Conoce y aplica la teoría de la Ecuación de Navier Stokes
 C2: De Investigación Formativa: Elabora una monografía sobre la aplicación de temas desarrollados en el curso relacionado a un caso de estudio.

PROGRAMACIÓN DE CONTENIDOS

SEMANA	CONTENIDO CONCEPTUAL	CONTENIDO PROCEDIMENTAL	CONTENIDO ACTITUDINAL	INDICADORES
7	 Ecuación de Navier Stokes (ENS). 	de la ecuación de Navier Stokes y	 Responsabilidad en trabajo individual y equipo. Realiza práctica calificada con responsabilidad. Es tolerante en actitudes diferentes de su entorno. 	 Aplica conceptos de la ENS y de Euler Sesión 14 1ra. práctica calificada Presenta 1er avance parcial la Monografía.

SEMANA	SEMANA DE EXÁMENES PARCIALES
8	15: Examen Parcial.

SEMANA	CONTENIDO	CONTENIDO	CONTENIDO	INDICADORES
SEIVIANA	CONCEPTUAL	PROCEDIMENTAL	ACTITUDINAL	INDICADORES

	Sesión 16	 Conoce las 	 Responsabilidad en su 	 Aplica teoría de las
	 Ecuaciones 	ecuaciones	trabajo individual y	ecuaciones
	termodinámicas	termodinámicas en	equipo.	termodinámicas.
	en la DFG: casos	sistemas marinos.	 Participa en sesiones de 	Sesión 17
9	de estudio.	 Resuelve problemas 	aprendizajes.	Tarea Nº 3
		e interpreta los	 Es tolerante en 	Presenta
		resultados	diferentes	correcciones de la
		obtenidos.	actitudes de su entorno	monografía.
			y el suyo	

QUINTA UNIDAD: Métodos y numéricos en la solución de EDPs.

DURACIÓN: 02 Semanas: 10ma. 11va. 12va. Semana

CAPACIDADES DE LA UNIDAD

C1: De Enseñanza-Aprendizaje: Comprende métodos y propiedades numéricas en la solución de ecuaciones diferenciales parciales (EDPs).

C2: De Investigación Formativa: Elabora una monografía sobre la aplicación de temas desarrollados en el curso relacionado a un caso de estudio.

PROGRAMACIÓN DE CONTENIDOS

SEMANA	CONTENIDO CONCEPTUAL	CONTENIDO PROCEDIMENTAL	CONTENIDO ACTITUDINAL	INDICADORES
10	Sesión 18 La ecuación de Advección. Aplicaciones en casos de estudio	Desarrolla temática propuesta. Resuelve problemas e interpreta resultados.	Responsabilidad en trabajo individual y equipo. Participa en sesiones de aprendizaje y solución de problemas.	 Aplica teoría en aplicación de las EDPs Hiperbólicas. Sesión 19 Tarea Nº 3
11	Sesión 20 • La ecuación de onda • Aplicaciones en casos de estudio	 Desarrolla temática conceptual propuesta. Resuelve problemas e interpreta resultados obtenidos 	Responsabilidad en trabajo individual y en equipo. Es tolerante en actitudes diferentes de los demás en relación al suyo	 Aplica conceptos relevantes. Sesión 21 Presenta 2do avance parcial de monografía.
12	Sesión 22 La ecuación de Difusión Aplicaciones en casos de estudio	 Desarrolla temática conceptual propuesta. Resuelve problemas e interpreta resultados obtenidos 	, ,	 Aplica conceptos aprendidos sobre modelos de difusión. Sesión 23 Tarea N° 4

SEXTA UNIDAD: Método numérico de elementos y volúmenes finitos.

DURACIÓN: 04 Semanas: 13va, 14va y 15va Semana

CAPACIDADES DE LA UNIDAD

C1: De Enseñanza-Aprendizaje: Aplica conceptos del método numérico de elementos finitos y volúmenes finitos en la Dinámica de Fluidos Geofísicos Computacional.

C2: De Investigación Formativa: Elabora una monografía sobre la aplicación de temas desarrollados en el curso relacionado a un caso de estudio.

PROGRAMACIÓN DE CONTENIDOS

SEMANA	CONTENIDO CONCEPTUAL	CONTENIDO PROCEDIMENTAL	CONTENIDO ACTITUDINAL	INDICADORES
13	Sesión 24 • Método de Elementos Finitos (MEF)	temática desarrollada.	 Responsabilidad en trabajo individual y en equipo. Es tolerante en actitudes diferentes de su entorno. 	 Aplica el MEF en casos prácticos Sesión 25 Presenta 3er avance parcial de monografía
14	Sesión 26 • Método de	 Desarrolla temática conceptual 	Demuestra responsabilidad en	 Aplica el MVF en casos prácticos

	Volúmenes Finitos	propuesta.	trabajo individual y en	Sesión 27
	(MVF).	 Resuelve problemas 	equipo.	Tarea Nº 5
		e interpreta los	 Es tolerante en actitudes 	
		resultados	diferentes de su entorno.	
		obtenidos.		
	Sesión 28	 Comprende 	 Responsabilidad en 	 Aplica temas
	 Tópicos selectos 	temática	trabajo individual y	selectos
	de análisis de	desarrollada.	equipo.	desarrollados
	series de tiempo,	 Resuelve problemas 	 Participa en actividades 	Sesión 29
15	Interpolación, y	e interpreta	de	2da.práctica
15	aplicaciones.	resultados	aprendizaje	calificada
		obtenidos.	 Es tolerante en actitudes 	Presenta
			diferentes de su entorno.	monografía, como
				producto Final y
				acreditable.

SEMANA	SEMANAS DE EXÁMENES	
16	Sesión 30: Examen Final.	
17	Sesión 31: Examen Sustitutorio.	

V. <u>ESTRATEGIAS METODOLÓGICAS</u>

A fin de lograr un aprendizaje optimo, se emplearán las siguientes estrategias:

- a. Clases: Son sesiones que serán atendidas con diferentes plataformas virtuales entre que se usaran están: ZOOM de mayor frecuencia complementada con GOOGLE MEET y CLASROOM de ser posible su uso. Los estudiantes podrán interactuar mediante el correo institucional, SGA de la Universidad
- b. Prácticas: Los estudiantes desarrollarán, tareas planteadas por el docente relacionado a los temas tratados en las clases mediante la resolución de problemas, y serán entregados de forma virtual de acuerdo a la plataforma seleccionada.

VI. MATERIALES EDUCATIVOS Y OTROS RECURSOS DIDÁCTICOS

MEDIOS INFORMÁTICOS: Computadora y software educativo

MATERIALES EDUCATIVOS IMPRESOS: Libros de Consulta. Separatas. Documentos de trabajo. Artículos Científicos.

MATERIALES DIGITALES: Texto digital. Tutoriales. Página web. Diapositivas. Videos. Internet

VII. EVALUACIÓN

La Evaluación, valora y mide los logros del aprendizaje en función de los objetivos propuestos en el curso. Para ello, se tiene en cuenta una evaluación esencialmente formativa, que permita formar juicio o calificación y que nos lleve a tomar decisiones de mejora. Se considerará la evaluación valorativa: actitudes positivas, reflexiones y otros, que bonificarán puntos en lo referente al trabajo académico.

Como instrumentos de evaluación se utilizaran la Lista de Cotejo y las Rubricas con la finalidad de evaluar conocimientos declarativo, procedimental y actitudinal, habilidades de pensamiento y aptitudes.

EVALUACIONES	DESCRIPCION	PESOS Y COEFICIENTES
EXAMEN PARCIAL	Teórico/práctico	20%
EXAMEN FINAL	Teórico/práctico	20%
PRÁCTICAS (TAREAS	Demostrativas	15%
TRABAJO DE INVESTIGACIÓN	Monografía (ensayo)	15%
(Investigación formativa)	Exposición	30%

- Un (01) examen sustitutorio (ES) que comprende todo el curso y reemplazará la nota más baja de EP o EF.
- Investigación formativa (IF): Presentación y sustentación de una monografía sobre un tema específico de la asignatura en relación con la especialidad. Se evalúa por medio de una rúbrica tanto para la presentación como para la sustentación.

Honestidad académica

Todas las actividades de los estudiantes deben ser originales, de ocurrir una falta o plagio se recibirá automáticamente la nota de cero en dicha actividad de evaluación y se elevará el informe respectivo al Comité Disciplinario o Autoridad correspondiente de la Carrera Profesional.

VIII. BIBLIOGRAFÍA

8.1 Básica

- 1. KUNDU, P.J., 1990. Fluid Mechanics. Academic Press Inc., 638 pp.
- 2. TURNER, J.S., 1973. Bouyancy effects in fluids. Cambridge University Press, 368 pp.
- 3. VALLIS, G.K., 2006. **Atmospheric and oceanic fluid dynamics**. Cambridge University Press, 745 pp.
- 4. PEDLOSKY, J., 1987. Geophysical Fluid Dynamics, Springer-Verlag, 710 pp.
- 5. CUSHMAN-ROISIN, B., J.M. BECKERS., 2009.Introduction to Geophysical Fluid Dynamics: Physical and Numerical Aspects, Academic Press, 759 pp. http://engineering.dartmouth.edu/~cushman/books/GFD.html.
- 6. McWILLIAMS, J.C., 2006, **Fundamental of Geophysical Fluid Dynamics**. Cambridge University Press, 266 pp.
- 7. Burden Richard y Douglas Faires, 1998. **Análisis Numérico**, 6^a Edición. 727 pp.
- 8. Nieves Antonio y Domínguez Federico. **Métodos Numéricos aplicados a la Ingeniería**. 3ª Edición. 603 pp.

8.2 Complementaria

- Lecture Notes for the COMPSTAR School on Computational Astrophysics, 2011, Rezzolla Luciano, 8-13/02/2010 Caen, France. Numerical Methods for the Solution of Partial Differential Equations. 2011. 90 pp.
- 2. Separatas y Notas de Clases

Bellavista, marzo del 2022

6